

Table of contents:

e TP2 - Introduction Flask
e ButduTP
Mise en place et configuration du serveur

Installation de Python et Flask
e Création du serveur
e Configuration du serveur

Créations des premieres routes
e Route about
* Route hello
e API et Database
e |nstallation d'un serveur mysql et configuration
e |nstallation package db, importation et configuration
e Création de notre db
» Création de la database et la table
e Afficher les utilisateurs
e Afficher un utilisateur
e Insertion d'un utilisateur
e Sécurisation d'une API
e Configuration du package
e Sécuriser I'API
e Data du token
e Partie Bonus

A > CoursR209 > TP2 - Introduction Flask

TP2 - Introduction Flask

But du TP

Le but du TP est de mettre en place un serveur BackEnd, avec différentes routes, qui seront
sécurisées.

Les routes devrons vous permettre d’afficher du contenu.

Vous devrez également mettre en place un token afin de garantir une connexion sécurisée.
Dans ce TP vous ne prendrez pas en compte les failles XSS et injections SQL.

Pour les bouts de code je vous laisse aller voir le cours, tout est dedans !

Attention, si vous étes sur Linux dans I'invité de commande ne vous connectez pas en tant que
“root” sinon vous risquez d’avoir des soucis de droits.

Avant toute chose, sur le réseau de I'lUT vous risquez d’avoir quelques soucis liés au proxy,
voici donc les 2 commandes a exécuter avant de commencer le TP :

export http proxy=cache-etu.univ-artois.fr:3128
export https proxy=cache-etu.univ-artois.fr:3128

Mise en place et configuration du
serveur

Installation de Python et Flask

Avant toute chose, il faut installer Python ainsi que le package Flask.
Voici la commande Ubuntu a utiliser pour installer Python et pip :

sudo apt install python3 python3-pip

Ensuite il faut installer Flask, voici la commande a utiliser :

https://docs.maximelefebvre.fr/
https://docs.maximelefebvre.fr/docs/category/cours-r209

pip install Flask

@ INFO

Si vous avez un probleme d'installation, il est possible que c'est le proxy qui bloque :

pip install --proxy lien du proxy Flask

Création du serveur

Dans un premier temps vous allez créer un dossier sur votre PC, c’est ce dossier qui va
contenir notre petit projet.

Ensuite nous allons créer notre fichier nommé “app.py”, puis vous allez venir créer la base de
votre serveur.

Je veux que le serveur tourne sur 127.0.0.1 et sur le port 5000.

N’oubliez pas de configurer vos variables d’environnement, sinon vous aurez une erreur et
mettez en mode “développement” sinon vous travaillez en mode production.

set FLASK APP=votre app.py
set FLASK ENV=development

export FLASK APP=votre app.py
export FLASK ENV=development

Configuration du serveur

La configuration pour ce TP est tres simple, nous allons juste créer une simple route “/” afin de
voir si tout fonctionne correctement.
Cette route sera la racine de notre serveur, a savoir : http://localhost:5000/

Créations des premieres routes

http://localhost:5000/

Route about

Pour commencer vous allez créer votre route nommée “about”, je veux que lorsque j'arrive sur
cette route un message s’affiche :

» “Bonjour je suis prénom”

Route hello

Ensuite vous allez devoir créer une route avec un parametre, cette route devra s’appeler
“hello” puis le parametre sera le prénom qui sera affiché ainsi :

'II

e “Bonjour a toi parametre_prénom mon ami(e)

Une fois cela fait, merci d’appeler le professeur afin de valider le travail effectué.

APl et Database

Installation d'un serveur mysql et configuration

Il faut tout d'abord installer un serveur mysql :
sudo apt install mysql-server
Ensuite il faut finir la configuration de l'installation :

sudo mysql secure installation

A\ ATTENTION

Durant la phrase de la secure_installation, s'il n'est pas demandé de choisir la sécurité
du mot de passe, vous allez devoir réaliser la commande suivante :

sudo mysql

SHOW VARIABLES LIKE 'validate password%';

0n modifie la variable pour ne pas avoir de contrainte sur le mot de passe
SET GLOBAL validate password.policy=L0W;

Apres avoir réalisé les actions ci-dessus, vous pouvez passer a la suite.
Apres avoir réaliser l'installation il faut venir modifier le mot de passe utilisateur :
sudo mysql

Une fois dans le shell mysql, vous devez lancer la requéte SQL suivante (en modifiant le mot
de passe) :

ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql native password BY
"password’;

@ INFO

Il est possible que les changements ne soient pas pris en compte tout de suite, si c'est le
cas alors nous allons lancer la commande pour "refresh" les privileges :

FLUSH PRIVILEGES;

Q success

Désormais pour vous connecter a votre serveur mysql il faudra utiliser la commande
suivante :

mysql -u root -p

Installation package db, importation et configuration

Apres avoir créer des routes, maintenant passons a I’'étape suivante : MySQL
Vous disposez d’un acces a une DB, si ce n’est pas le cas installez un logiciel permettant

d'avoir acces a une db.
Pour installer le package il vous faudra slrement rajouter et/ou modifier le proxy, pour cela
vous devez utiliser une commande que vous avez utilisé dans un autre TP.

Installez le package Python pour MySQL :

pip install mysql-connector-python

pip3 install mysqgl-connector-python

Puis importez le dans votre application :

import mysql.connector as MC

Ensuite je vous laisse chercher dans le cours pour créer la connexion a votre db. Attention

celle-ci devra étre dans un try except.

Création de notre db
Vous allez devoir créer une db et une table nommée “users” avec cette structure :

e id : int auto_increment primary key
e pseudo : varchar(25)

e password : varchar(255)

Si vous souhaitez vous connectez a mysql via un invité de commande voici la commande :

mysql -u root -p

Donc soit vous le faites a la main soit vous téléchargez le fichier “users.sql”
disponible dans moodle a la section du TP 2.

Création de la database et la table

Avant toute chose il faut créer la database (ou sera stockée la table) :

CREATE DATABASE db tp2;

Ensuite il faut exécuter le fichier SQL pour créer la table :

mysql -u root -p db tp2 < users.sql

Et ensuite il faut vérifier si tout est bon :

USE db tp2;
SHOW TABLES;

Vous pouvez méme regarder si votre table 'users' contient bien les données :

SELECT * FROM users;

Afficher les utilisateurs

En utilisant le cours sur Flask, créez une route nommée “users”, cette route devra afficher la
liste des utilisateurs (uniquement le pseudo), I'affichage devra étre au format JSON.

Vous allez donc devoir utiliser un logiciel permettant de réaliser des requétes APl REST
(Insomnia, Postman, etc...).

Afficher un utilisateur

Objectif suivant : Créer une route permettant d’afficher I'ID et le pseudo d’un utilisateur en
utilisant son pseudo comme parametre, si aucun résultat alors j'affiche un message d’erreur.
Exemple : http://localhost:5000/user/maxime - not found

Exemple : http://localhost:5000/user/userl - id : 1, pseudo : userl

Résultat au format JSON et nom de la route “user”.

Insertion d'un utilisateur

En utilisant le cours sur Flask et sur le SQL, votre objectif est le suivant :

http://localhost:5000/user/maxime
http://localhost:5000/user/user1

» Créer une route permettant de créer un utilisateur dans la table “users”, le pseudo et le
mot de passe devrons étre des parameétres de |'api.

» Les 2 parametres devront étre obligatoires, si ce n’est pas le cas alors retournez un
message d’erreur.

Conseils :

* Le type de la requéte sera POST et non du GET.
e SQL : utiliser INSERT INTO

Une fois cela fait, merci d’appeler le professeur afin de valider le travail effectué.

Sécurisation d'une API

Configuration du package

Maintenant vous devez mettre en place une route permettant de générer un token.
Installation du package JWT :

pip install PyJWT

pip3 install PyJWT
Importation du package :
import jwt

Pour cela créez une route nommeée “login”.

Dans le cours vous avez un exemple afin de créer un token, je vous laisse donc allez jeter un
oeil sur le cours, reprendre le code est I'adapter au TP.

Exigences :

» Le token devra contenir le pseudo de la personne connectée

e Durée du vie : 30min

Une fois cela fait, merci d’appeler le professeur afin de valider le travail effectué.

Sécuriser I'API

Reprenez la route “users”, je veux que désormais pour exécuter cette route, il faudra avoir un
token valide.

Il existe un exemple dans le cours sur Flask a vous de reprendre le code et I'adapter.

Si je ne suis pas connecté avec un token valable alors je veux un message interdisant I'acces.

Data du token

Maintenant créez une route sécurisée (sans parametre), qui affiche le message suivant :
» “Tu es connecté(e) sous le pseudo de : pseudo”

Conseil : Vous allez devoir décoder le token afin de récupérer une information

Une fois cela fait, merci d’appeler le professeur afin de valider le travail effectué.

Partie Bonus

Créez une route sécurisée par le token, qui permet de modifier le mot de passe d’un
utilisateur, le mot de passe devra répondre a ces criteres :

e longueur min: = 6
e longueur max : = 10
e doit contenir : 1 majuscule, 1 minuscule et 1 chiffre au minimum

* ne devra étre le méme que celui actuellement en cours de modification
Si un critére n’est pas respecter alors retournez un message d’erreur.

Une fois cela fait, merci d’appeler le professeur afin de valider le travail effectué.

/' Editer cette page

https://github.com/facebook/docusaurus/tree/main/packages/create-docusaurus/templates/shared/docs/cours/tp2.md
https://github.com/facebook/docusaurus/tree/main/packages/create-docusaurus/templates/shared/docs/cours/tp2.md

