
R201 TP 6 :

Audit des protocoles TCP et UDP
via Wireshark

1. Environnement :

Machine Linux en interne

2. Etude des protocoles :

Le protocole TCP est un protocole orienté connexion :

il y a donc une phase d'établissement de la connexion (le
"bonjour en 3 fois" "3-way handshake") qui précède les
échanges d'informations entre la source et le destinataire, cette
phase d'échanges terminée la connexion se termine par une
phase de fermeture de la connexion (4 segments : FIN, ACK
(pour fermer la connexion dans un sens), FIN, ACK
(pour fermer la connexion dans l'autre sens)).

Le protocole UDP est un protocole non orienté connexion :

les informations à transmettre sont envoyées telles quelles,
aucune phase d'établissement de la connexion, aucune
fermeture.

Rappel :

●​ Comment TCP exerce-t-il la ré-émission de messages perdus et
le ré-ordonnancement ?

TCP utilise des numéros de séquence pour réordonner les
paquets et des accusés de réception pour la réémission des
paquets perdus.

●​ Comment TCP exerce-t-il le contrôle de flux ?

TCP utilise des fenêtres de réception pour contrôler le flux de
données entre l'émetteur et le récepteur.

●​ Comment TCP exerce-t-il le contrôle de congestion ?

TCP utilise un algorithme de contrôle de congestion, tel que
TCP Reno, qui ajuste la fenêtre de congestion pour éviter la
congestion du réseau.

●​ Comment TCP exerce-t-il le multiplexage des applications ?

TCP utilise des ports pour multiplexer les applications.

●​ Parmi les services précédents, quels sont ceux offerts par UDP ?

UDP offre des services de multiplexage des applications, mais
ne fournit pas de mécanismes de ré-émission, de
réordonnancement, de contrôle de flux ou de contrôle de
congestion.

3. Etude du trafic TCP :

Trafic normal

TCP est encapsulé dans SSH, FTP ou HTTP. Pour générer un trafic
TCP vous pouvez donc utiliser ses services. Mais on peut également
utiliser l'outil netcat permettant d'ouvrir des connexions réseau TCP
ou UDP ce que vous allez d'abord utiliser ici.

Netcat permet d'ouvrir simplement un serveur grâce à la commande
nc -l hote num_port : un serveur sur l'hôte "hôte" à l'écoute sur le
port "num_port". On peut aussi ne pas préciser l'hôte et l'ouverture se
fera sur la boucle locale (interface lo).

Un client peut alors se connecter grâce à la commande nc hote
num_port.

●​ Lancez Wireshark sur l'interface boucle locale (lo) avec un filtre

de capture TCP

●​ Lancez dans un terminal un serveur sur la boucle locale à
l'écoute sur le port 8000

nc -l 8000

●​ Lancez dans un autre terminal un client

nc localhost 8000

●​ Envoyer des messages
●​ Finissez la discussion par ctrl+D.
●​ Coupez la capture Wireshark et filtrez cette discussion.

https://fr.wikipedia.org/wiki/Netcat

On lance une RT-Box et une machine linux en interne

Linux :

apt update

apt install wireshark

On lance Wireshark sur notre terminal Linux. (loopback.io)

On lance une capture Wireshark avec un filtre TCP (tcp)

Clique droit > Suivre :

Statics des flux :

Ensuite on coche la case en bas à gauche : limiter au filtre d’affichage

et au milieu on met : TCP flows

●​ Vérifiez que les numéros de séquence et d'acquittement
correspondent bien à ce que vous avez vu en cours et TD.

Ils correspondent bien à ce vus en td.

●​ Le champ taille de fenêtre (Win) est codé sur 2 octets, sa valeur
maximale est donc de 65535 octets. Pourtant vous pouvez
apercevoir des valeurs plus grandes pour ce champ dans cet
échange.

Recherchez dans l'analyse Wireshark d'une de ces trames, une raison
grâce à laquelle c'est possible.

●​ Identifiez les segments TCP liés à la phase d'établissement de la
connexion TCP ("3-way handshake") et vérifiez - par rapport au
cours - les fanions/drapeaux/flags TCP apparaissant ainsi que les
numéros de séquence et d'acquittement.

●​ Identifiez les segments TCP liés à la fermeture de la connexion
TCP et vérifiez - par rapport au cours - les
fanions/drapeaux/flags TCP apparaissant.

Connexion multiple

Ouvrez maintenant plusieurs connexions SSH sur une même
machine. Les connexions se mélangent-elles ? Pourquoi ?

On se met sur le serveur et on tappe le commande ssh
administrateur@adress_ip_de_la_rt_box(172.31.25.XX)

ssh administateur@localhost

Si ça marche pas faire la commande :

sudo apt install openssh-server

sudo -s

ssh administateur@localhost

Consultez un même site depuis plusieurs onglets d'un même
navigateur web. Les connexions se mélangent-elles ? Pourquoi ?

Lorsque vous consultez un même site depuis plusieurs onglets d'un
même navigateur web, les connexions TCP peuvent se mélangent.

Cela est dû au fait que les connexions TCP sont gérées par le système
d'exploitation (OS) de l'ordinateur et non par le navigateur web.
Lorsque vous ouvrez plusieurs onglets d'un même site web dans un
navigateur, chaque onglet ouvre une nouvelle session de navigation,
mais les connexions TCP sont gérées par le système d'exploitation.

Ouverture vers un port non utilisé :

●​ Capturez les trames TCP issues d'une demande de connexion
vers un port non utilisé.

Le port 43774 surligné est le port du serveur, tandis que les autres ports
correspondent aux clients.

●​ Expliquez ce qu'il se passe.

On a que deux trames

Connexion coupée

●​ Capturez les trames TCP issues d'une connexion coupée.

●​ Que se passe-t-il sur le réseau ? Mettre une capture de ces
segments dans votre compte-rendu à partir de l'outil de
visualisation d'échanges de Wireshark.

Pour fournir une capture de segments à partir de Wireshark ou tout
autre outil de capture de paquets, je vous recommande de le faire
sur votre propre système, car cela nécessite l'accès au réseau
concerné. Une fois que vous avez capturé les segments TCP avec
Wireshark, vous pouvez examiner les échanges entre les machines
pour voir comment les connexions sont établies, les données sont
envoyées et les ré-émissions sont gérées.

●​ Le timer de ré-émission utilisé dans ce cas par TCP, a-t-il une
durée fixe ? Comment évolue-t-il ? Quel intérêt ?

Quant au timer de ré-émission utilisé par TCP, il n'a pas une durée
fixe. Il évolue dynamiquement en fonction des conditions du réseau.
Initialement, TCP utilise un timer relativement court pour détecter
les pertes de segments et les ré-émettre rapidement. Si aucune
réponse n'est reçue avant l'expiration du timer, le timer est
augmenté de manière exponentielle dans le cadre de l'algorithme de
retransmission exponentielle (exponential backoff). Cette
augmentation progressive du timer permet à TCP de ré-essayer
d'envoyer les segments après des délais de plus en plus longs,
réduisant ainsi la charge sur le réseau en cas de congestion.

●​ Combien de temps TCP insiste-il avant d'arrêter de réémettre.

TCP continue de ré-émettre les segments perdus jusqu'à ce qu'il
reçoive un accusé de réception valide ou qu'un nombre maximal de
tentatives soit atteint. Ce nombre maximal de tentatives est
généralement déterminé par une politique de ré-émission, qui peut
être basée sur un nombre fixe ou une durée maximale.

●​ Si la deuxième machine se reconnecte, que se passe-t-il ?

Si la deuxième machine se reconnecte, le processus de connexion
TCP habituel s'applique. Une nouvelle session TCP est établie entre
les deux machines, avec un nouvel ensemble de numéros de
séquence et d'autres paramètres de connexion. Les données sont
ensuite échangées comme dans toute nouvelle connexion TCP. Si
des données étaient en transit lors de la déconnexion initiale, elles ne
sont pas ré-établies automatiquement. Il incombe aux applications
de gérer la reprise de la communication là où elle s'était interrompue,
si nécessaire.

4. Analyse de ports :

Avec Netcat

Il est possible de faire avec netcat et l'option -z

●​ Lancez dans un terminal un serveur sur la boucle locale à
l'écoute sur le port 800

●​ nc -l 800 Lancez Wireshark sur l'interface boucle locale (lo)
●​ Lancez dans un terminal le scan Netcat sur la plage réduite

800-802
●​ nc -z localhost 800-802 Coupez la capture Wireshark et filtrez

cette discussion.
●​ Filtre Wireshark pour aider tcp.port == 800 Que fait netcat pour

scanner un port ? Mettre une capture du scan du port 800 dans
votre compte-rendu. Mettre aussi une capture du scan d'un

port non ouvert comme le 801 par exemple dans votre
compte-rendu.

Avec Nmap

Un outil bien plus puissant et tout aussi connu pour faire de l'analyse
de ports est Nmap. Vous allez pour finir ce TP capturer et analyser
grâce à Wireshark différent type de scans via Nmap.

Les scans se font sur votre localhost - Attention : il n'est pas autorisé
de scanner une machine qui n'est pas à vous -

●​ Pour chacun de ces scans, vous devez comme l'analyse du scan
via netcat :

1.​ Lancez un serveur dans un terminal (nc -l 800)
2.​ Lancez Wireshark sur la boucle locale, le filtre d'affichage

tcp.port == 800 va vous aider
3.​ Lancez le scan puis analyser le résulat : quel(s) format(s)

de segment TCP est/sont envoyé(s) pour chaque type de
scan ? Mettre les captures de chaque scan du port 800
dans votre compte-rendu.

Les scan à analyser sont les suivants :

1.​ nmap -sS localhost
2.​ nmap -sT localhost
3.​ nmap -sA localhost
4.​ nmap -sF localhost
5.​ nmap -sM localhost
6.​ nmap -sN localhost
7.​ nmap -sW localhost
8.​ nmap -sX localhost

Pour finir, Nmap peut aussi faire des scans UDP avec la commande
nmap -sU localhost.

●​ Lancez Wireshark. Lancez la commande nmap -sU localhost.
Filtrez l'analyse d'un port, par exemple udp.port == 800.
Conclure sur le fonctionnement de ce scan : quel type de trame

https://fr.wikipedia.org/wiki/Nmap

est envoyé ? Quel type de de trame est retourné ? Mettre une
capture dans votre compte-rendu.

	Audit des protocoles TCP et UDP via Wireshark
	Trafic normal
	Connexion multiple
	Connexion coupée

